Median Calculation:
From: | To: |
The median is the middle value in a sorted list of numbers. Unlike the mean (average), the median is less affected by extremely large or small values, making it a robust measure of central tendency.
The calculator follows these steps:
Steps:
Example: For numbers 3, 1, 7, 5:
Details: The median is particularly useful when:
Tips:
Q1: When should I use median instead of mean?
A: Use median when your data has outliers or is skewed. The mean is more appropriate for normally distributed data without extreme values.
Q2: What's the difference between median and average?
A: Average typically refers to the mean (sum divided by count), while median is the middle value. They can be quite different in skewed distributions.
Q3: How does median handle even vs. odd number of values?
A: For odd counts, it's the exact middle. For even counts, it's the average of the two middle values.
Q4: Can median be calculated for non-numeric data?
A: Yes, median can be calculated for ordinal data (e.g., survey responses like "poor, fair, good").
Q5: Is median affected by extreme values?
A: No, that's one of its main advantages over the mean. Extreme values don't affect the median as long as they don't change which value is in the middle.